Convergence almost everywhere of sequences of measurable functions
نویسندگان
چکیده
منابع مشابه
Almost Everywhere Convergence of Series in L
We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (ci) with ∑∞ i=1 |ci| = ∞, such that for every dynamical system (X,Σ, m, T ) and f ∈ L1(X), ∑∞i=1 cif(T ix) converges almost everywhere. A similar result is obtained in the real variable context.
متن کاملAbout the Almost Everywhere Convergence of the Spectral Expansions of Functions
Abstract. In this paper we study the almost everywhere convergence of the expansions related to the self-adjoint extension of the LaplaceBeltrami operator on the unit sphere. The sufficient conditions for summability is obtained. The more general properties and representation by the eigenfunctions of the Laplace-Beltrami operator of the Liouville space L 1 is used. For the orders of Riesz means...
متن کاملAlmost Everywhere Convergence of Orthogonal Expansions of Several Variables
For weighted L space on the unit sphere of R, in which the weight functions are invariant under finite reflection groups, a maximal function is introduced and used to prove the almost everywhere convergence of orthogonal expansions in h-harmonics. The result applies to various methods of summability, including the de la Vallée Poussin means and the Cesàro means. Similar results are also establi...
متن کاملOn Almost Everywhere Strong Convergence of Multidimensional Continued Fraction Algorithms
We describe a strategy which allows one to produce computer assisted proofs of almost everywhere strong convergence of Jacobi-Perron type algorithms in arbitrary dimension. Numerical work is carried out in dimension three to illustrate our method. To the best of our knowledge this is the rst result on almost everywhere strong convergence in dimension greater than two.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1981
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-45-1-119-124